martes, 19 de febrero de 2013

DIODO RECTIFICADOR




Un diodo rectificador es uno de los dispositivos de la familia de los diodos más sencillos. El nombre diodo rectificador” procede de su aplicación, la cual consiste en separar los ciclos positivos de una señal de corriente alterna.

Si se aplica al diodo una tensión de corriente alterna durante los medios ciclos positivos, se polariza en forma directa; de esta manera, permite el paso de la corriente eléctrica.

Pero durante los medios ciclos negativos, el diodo se polariza de manera inversa; con ello, evita el paso de la corriente en tal sentido.

Durante la fabricación de los diodos rectificadores, se consideran tres factores: la frecuencia máxima en que realizan correctamente su función, la corriente máxima en que pueden conducir en sentido directo y las tensiones directa e inversa máximas que soportarán.

Una de las aplicaciones clásicas de los diodos rectificadores, es en las fuentes de alimentación; aquí, convierten una señal de corriente alterna en otra de corriente directa.


   Diodos rectificadores
                                                                                               
                                               



DIODO ZENER


Un diodo zener es básicamente un diodo de unión, pero construido especialmente para trabajar en la zona de ruptura de la tensión de polarización inversa; por eso algunas veces se le conoce con el nombre de diodo de avalancha.

Su principal aplicación es como regulador de tensión; es decir, como circuito que mantiene la tensión de salida casi constante, independientemente de las variaciones que se presenten en la línea de entrada o del consumo de corriente de las cargas conectadas en la salida del circuito.



El diodo zener tiene la propiedad de mantener constante la tensión aplicada, aun cuando la corriente sufra cambios. Para que el diodo zener pueda realizar esta función, debe polarizarse de manera inversa.

Generalmente, la tensión de polarización del diodo es mayor que la tensión de ruptura; además, se coloca una resistencia imitadora en serie con él; de no ser así, conduciría de manera descontrolada hasta llegar al punto de su destrucción.

En muchas aplicaciones de regulación de tensión, el diodo zener no es el dispositivo que controla de manera directa la tensión de salida de un circuito; sólo sirve de referencia para un circuito más complejo; es decir, el zener mantiene un valor de tensión constante en sus terminales.

Esta tensión se compara mediante un circuito amplificador a transistores o con circuito integrados con una tensión de salida. El resultado de la comparación permite definir la acción a efectuar: aumentar o disminuir la corriente de salida, a fin de mantener constante la tensión de salida.

Es importante hacer notar que los diodos zener se construyen especialmente para que controlen sólo un valor de tensión de salida; por eso es que se compran en términos de la tensión de regulación.
                                                              







DIODO EMISOR DE LUZ (LED)


Cuando un diodo semiconductor se polariza de manera directa, los electrones pasan de la sección N del mismo, atraviesan la unión y salen a la sección P.

En la unión se efectúa la recombinación electrónica, en donde los electrones se unen a los huecos. Al unirse, se libera energía mediante la emisión de un fotón (energía electromagnética).

Esta emisión de energía, que en un diodo normal es pequeña, puede aumentar mediante la utilización de materiales como el
galio, el arsénico y el fósforo en lugar del silicio o el germanio.




Así, los diodos diseñados especialmente para emitir luz son conocidos como LED.

El color de la luz emitida depende del intervalo de energía del material; por ejemplo, el fosfato de galio arsenídico (GaAsP) emite luz de color rojo y el fosfato de galio (GaP) emite luz de color verde.

Los LED pueden emitir radiaciones desde el infrarrojo hasta la luz visible.

Es importante resaltar que los LED se polarizan de manera directa y soportan una tensión máxima al cual emiten la mayor radiación. Si se sobrepasa este valor, el LED puede dañarse.El LED (Light-Emitting Dio-de  Diodo Emisor de Luz), es un dispositivo semiconductor que emite luz incoherente de espectro reducido cuando se polariza de forma directa la unión PN en la cual circula por él una corriente eléctrica . Este fenómeno es una forma de electro luminiscencia  el LED es un tipo especial de diodo que trabaja como un diodo común, pero que al ser atravesado por la corriente eléctrica, emite luz . Este dispositivo semiconductor está comúnmente encapsulado en una cubierta de plástico de mayor resistencia que las de vidrio que usualmente se emplean en las lámparas incandescentes. Aunque el plástico puede estar coloreado, es sólo por razones estéticas, ya que ello no influye en el color de la luz emitida. Usualmente un LED es una fuente de luz compuesta con diferentes partes, razón por la cual el patrón de intensidad de la luz emitida puede ser bastante complejo.


RELEVADOR 


El relé o revelador es un dispositivo electromecánico. Funciona como un interruptor controlado por un circuito eléctrico en el que, por medio de una bobina y un electro imán, se acciona un juego de uno o varios contactos que permiten abrir o cerrar otros circuitos eléctricos independientes.

Fue inventado por Joseph Henry en 1835.

Dado que el relé es capaz de controlar un circuito de salida de mayor potencia que el de entrada, puede considerarse, en un amplio sentido, como un amplificador eléctrico. Como tal se emplearon en telegrafía, haciendo la función de repetidores que generaban una nueva señal con corriente procedente de pilas locales a partir de la señal débil recibida por la línea. Se les llamaba "reveladores" 

Electronic component relays.jpg         


DIODO TRANSISTOR


Un transistor (la contracción de transfer resistor, transferencia de resistencia) es un dispositivo semiconductor con tres terminales utilizado como amplificador e interruptor en el que una pequeña corriente o tensión aplicada a uno de los terminales controla o modula la corriente entre los otros dos terminales. Es el componente fundamental de la moderna electrónica, tanto digital como analógica. En los circuitos digitales se usan como interruptores, y disposiciones especiales de transistores configuran las puertas lógicas, memorias RAM y otros dispositivos; en los cuircuitos analógicos se usan principalmente como amplificadores.  


      


  Existen distintos tipos de transistores, de los cuales la clasificación más aceptada consiste en dividirlos en transistores de bipolares o BJT (Bipolar Junction Transistor) y transistores de efecto de campo o FET (Field Effect Transistor). La familia de los transistores de efecto de campo es a su vez bastante amplia, englobando los JFET, IGFET, MOSFET, FET, NPN. PNP, BJT, VMOS, CMOS. 

Transformador


Se denomina transformador a un dispositivo eléctrico que permite aumentar o disminuir la tensión en un circuito eléctrico de corriente alterna, manteniendo la potencia. La potencia que ingresa al equipo, en el caso de un transformador ideal (esto es, sin pérdidas), es igual a la que se obtiene a la salida. Las máquinas reales presentan un pequeño porcentaje de pérdidas, dependiendo de su diseño y tamaño, entre otros factores.

El transformador es un dispositivo que convierte la energía eléctrica alterna de un cierto nivel de tensión, en energía alterna de otro nivel de tensión, basándose en el fenómeno de la inducción electromagnética. Está constituido por dos o más bobinas de material conductor, devanadas sobre un núcleo cerrado de material ferro magnético, pero aisladas entre sí eléctricamente. La única conexión entre las bobinas la constituye el flujo magnético común que se establece en el núcleo. El núcleo, generalmente, es fabricado bien sea de hierro o de láminas apiladas de acero eléctrico, aleación apropiada para optimizar el flujo magnético. Las bobinas o devanados se denominan primario y secundario según correspondan a la entrada o salida del sistema en cuestión, respectivamente. También existen transformadores con más devanados; en este caso, puede existir un devanado "terciario", de menor tensión que el secundario.


Rectificador controlador de silicio

El rectificador controlado de silicio (en inglés SCR: Silicon Controlled Rectifier) es un tipo de tiristor formado por cuatro capas de material semiconductor con estructura PNPN o bien NPNP. El nombre proviene de la unión de Tiratrón (tyratron) y Transistor.
Un SCR posee tres conexiones: ánodo, cátodo y gate (puerta). La puerta es la encargada de controlar el paso de corriente entre el ánodo y el cátodo. Funciona básicamente como un diodo retificador controlado, permitiendo circular la corriente en un solo sentido. Mientras no se aplique ninguna tensión en la puerta del SCR no se inicia la conducción y en el instante en que se aplique dicha tensión, el tiristor comienza a conducir. Trabajando en corriente alterna el SCR se desexcita en cada alternancia o semiciclo. Trabajando en corriente continua, se necesita un circuito de bloqueo forzado, o bien interrumpir el circuito.
El pulso de disparo ha de ser de una duración considerable, o bien, repetitivo si se está trabajando en corriente alterna. En este último caso, según se atrase o adelante el pulso de disparo, se controla el punto (o la fase) en el que la corriente pasa a la carga. Una vez arrancado, podemos anular la tensión de puerta y el tiristor continuará conduciendo hasta que la corriente de carga disminuya por debajo de la corriente de mantenimiento (en la práctica, cuando la onda senoidal cruza por cero)
Cuando se produce una variación brusca de tensión entre ánodo y cátodo de un tiristor, éste puede dispararse y entrar en conducción aún sin corriente de puerta. Por ello se da como característica la tasa máxima de subida de tensión que permite mantener bloqueado el SCR. Este efecto se produce debido al condensador parásito existente entre la puerta y el ánodo.


TRIAC

El triac es un dispositivo semiconductor de tres terminales que se usa para controlar el flujo de corriente promedio a una carga, con la particularidad de que conduce en ambos sentidos y puede ser bloqueado por inversión de la tensión o al disminuir la corriente por debajo del valor de mantenimiento. El triac puede ser disparado independientemente de la polarización de puerta, es decir, mediante una corriente de puerta positiva o negativa.
Cuando el triac conduce, hay una trayectoria de flujo de corriente de muy baja resistencia de una terminal a la otra, dependiendo la dirección de flujo de la polaridad del voltaje externo aplicado. Cuando el voltaje es mas positivo en MT2, la corriente fluye de MT2 a MT1 en caso contrario fluye de MT1 a MT2. En ambos casos el triac se comporta como un interruptor cerrado. Cuando el triac deja de conducir no puede fluir corriente entre las terminales principales sin importar la polaridad del voltaje externo aplicado por tanto actúa como un interruptor abierto.
Debe tenerse en cuenta que si se aplica una variación de tensión importante al triac (dv/dt) aún sin conducción previa, el triac puede entrar en conducción directa.


FIG. 1 FIG. 2
  La estructura contiene seis capas como se indica en la FIG. 1, aunque funciona siempre como un tiristor de cuatro capas. En sentido MT2-MT1 conduce a través de P1N1P2N2 y en sentido MT1-MT2 a través de P2N1P1N4. La capa N3 facilita el disparo con intensidad de puerta negativa. La complicación de su estructura lo hace mas delicado que un tiristor en cuanto a di/dt y dv/dt y capacidad para soportar sobre intensidades. Se fabrican para intensidades de algunos amperios hasta unos 200 A eficaces y desde 400 a 1000 V de tensión de pico repetitivo. Los triac son fabricados para funcionar a frecuencias bajas, los fabricados para trabajar a frecuencias medias son denominados alternistores En la FIG. 2 se muestra el símbolo esquemático e identificación de las terminales de un triac, la nomenclatura Ánodo 2 (A2) y Ánodo 1 (A1) pueden ser reemplazados por Terminal Principal 2 (MT2) y Terminal Principal 1 (MT1) respectivamente.
El Triac actúa como dos rectificadores controlados de silicio (SCR) en paralelo Fig. 3 , este dispositivo es equivalente a dos latchs


Resistencia


La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente y es directamente proporcional a la longitud e inversamente proporcional a su sección transversal en donde ρ es el coeficiente de proporcionalidad o la resistividad del material.Descubierta por Georg Ohm en 1827, la resistencia eléctrica tiene un parecido conceptual a la fricción en la física mecánica. La unidad de la resistencia en el Sistema Internacional de Unidades es el ohmio (Ω). Para su medición en la práctica existen diversos métodos, entre los que se encuentra el uso de un ohmnímetro. Además, su cantidad recíproca es la conductancia, medida en Siemens.
La resistencia de cualquier objeto depende de su geometría y de su coeficiente de resistividad a determinada temperatura: aumenta conforme es mayor su longitud y disminuye conforme aumenta su grosor o sección transversal. Cálculo experimental de la resistividad de un material . Además, de acuerdo con la ley de Ohm la resistencia de un material puede definirse como la razón entre la caída de tensión y la corriente en dicha resistencia,donde R es la resistencia en ohmios, V es la diferencia de potencial en voltios e I es la intensidad de corriente en amperios.
Según sea la magnitud de esta medida, los materiales se pueden clasificar en conductores, aislantes y semiconductor. Existen además ciertos materiales en los que, en determinadas condiciones de temperatura, aparece un fenómeno denominado superconductividad, en el que el valor de la resistencia es prácticamente nulo.




Capacitor

Un condensador (en inglés, capacitor,1 2 nombre por el cual se le conoce frecuentemente en el ámbito de la electrónica y otras ramas de la física aplicada), es un dispositivo pasivo, utilizado en electricidad y electrónica, capaz de almacenar energía sustentando un campo eléctrico. Está formado por un par de superficies conductoras, generalmente en forma de láminas o placas, en situación de influencia total (esto es, que todas las líneas de campo eléctrico que parten de una van a parar a la otra) separadas por un material dieléctrico o por el vacío. Las placas, sometidas a una diferencia de potencial, adquieren una determinada carga eléctrica, positiva en una de ellas y negativa en la otra, siendo nula la variación de carga total.
Aunque desde el punto de vista físico un condensador no almacena carga ni corriente eléctrica, sino simplemente energía mecánica latente; al ser introducido en un circuito se comporta en la práctica como un elemento "capaz" de almacenar la energía eléctrica que recibe durante el periodo de carga, la misma energía que cede después durante el periodo de descarga.



Interruptor

Un interruptor eléctrico es en su acepción más básica un dispositivo que permite desviar o interrumpir el curso de una corriente eléctrica. En el mundo moderno sus tipos y aplicaciones son innumerables, van desde un simple interruptor que apaga o enciende un bombillo, hasta un complicado selector de transferencia automático de múltiples capas controlado por computadora.
Su expresión más sencilla consiste en dos contactos de metal inoxidable y el actuante. Los contactos, normalmente separados, se unen mediante un actuante para permitir que la corriente circule. El actuante es la parte móvil que en una de sus posiciones hace presión sobre los contactos para mantenerlos unidos.





Bocina

La transducción sigue un doble procedimiento: eléctrico-mecánico-acústico. En la primera etapa convierte las ondas eléctricas en energía mecánica, y en la segunda convierte la energía mecánica en ondas de frecuencia acústica. Es por tanto la puerta por donde sale el sonido al exterior desde los aparatos que posibilitaron su amplificación, su transmisión por medios telefónicos o radioeléctricos, o su tratamiento.


El sonido se transmite mediante ondas sonoras, en este caso, a través del aire. El oído capta estas ondas y las transforma en impulsos nerviosos que llegan al cerebro. Si se dispone de una grabación de voz, de música en soporte magnético o digital, o si se recibe estas señales por radio, se dispondrá a la salida del aparato de señales eléctricas que deben ser convertidas en sonidos; para ello se utiliza el altavoz.

2 comentarios: